Full description not available
R**S
Polya's "How to Solve It"
This book is a classic on heuristics and should be required reading for math majors and others wanting to improve their problem-solving skills.
D**A
Helpful, Insightful, A Great Resource
Joseph R. Dell'Aquila, Ph.D.My first exposure to this book was probably as a young college student. When I started teaching physics and mathematics at the college and university level, I recommended this book to all of my students. Why? The table-like pages xvi - xvii are an excellent reminder of fruitful ways to understand, think about, attack and solve problems. Although I am a PhD in theoretical physics, I still dip into it occasionally when I need some insight or want to recall what I knew about approaching a problem. Is the book at that high a level? Of course not. It is a basic introduction to the fundamentals of problem solving. But remember that Michael Jordan, in "I Can't Accept Not Trying," always thanked Dean Smith, his famous college coach - who would bench Jordan if he got sloppy - for teaching him the fundamentals and Jordan said within a page of that: "fundamentals, that's what made Larry Bird such a great player." That is all this book is trying to give, fundamentals, and it does so brilliantly. To those whose reviews said it was not helpful and wanted to know where was the graduate level analysis, if you want to stick with Polya try "Inequalities" by G. H. Hardy, J. E. Littlewood, G. Pólya, all great to exceptional mathematicians with plenty of analysis to share and, for more specialized work, Isoperimetric Inequalities in Mathematical Physics by Polya and Szego. Note that one computer scientist/programmer disliked the book but another lauded it. I would never want to restrict dialogue on review but please check out the appropriateness and level of any book you buy. I have rarely written negative reviews on Amazon or elsewhere because I do my homework: using the Internet to find information on the work and even going to a library to see whether I like what their copy offers (I'm phrasing it this way because different editions, perhaps the library's edition vs. the one you're considering purchasing, can be quite different). Buy and use Polya if it is appropriate to your needs.
R**O
How to solve it!
I don’t read very many math books, but when I first picked up How to Solve It by G. Polya, I realized that this wasn’t your typical theoretical math book. I had only assumed so by flipping through the pages and seeing various figures and expressions…It is actually very little theory and more of how to actually approach hard problems.The very first part of the book lays it down on what Polya will drill upon the reader. The essential idea is basically a framework laid upon the reader on how to solve difficult problems — particularly in the realm of mathematics and logic.Why is this valuable? We tend to flail our hands and throw down the pen when we encounter a hard problem. Wouldn’t it be nice to have a systematic way, or yet a solution in which we can see on the horizon and eventually reach? This is the book that will teach us for that very purpose!The main idea is basically of when attempting to solve a hard problem, we must consider the following and ask ourselves the following:1. What is the unknown?2. What is the data that is presented?3. Did we make use of all the conditions presented by the problem?These three questions can virtually help us self reflect on how we solve problems and in time, with much practice — aid us in actually becoming smarter problem solvers. Are geniuses born, or bred? Is it nature, or nurture?Well, with this framework in mind, acquiring the persona of the genius interpreted by others becomes more nurture than anything.So what if we are still stuck on the problem? First thing is first, the point in which Polya makes is that we should not rush. We should not attempt to solve a problem when we have an incomplete understanding of the problem, or task. Before declaring ourselves stuck.. we must ask ourselves if we truly have a grasp of the problem in front of us.Ask ourself again… have we seen a similar problem before in the past? Better yet, have we solved a similar problem in the past? Can we somehow use that prior knowledge and integrate it into the process of attempting to solve the current problem?Finding sub-problems, or problems within the problem in which we can solve can possibly help us with the overall problem. Can we find the connection between the data presented and the unknown? Notice, and I agree with Polya in that we tend to not have a thorough understanding of the problem if we cannot answer these questions.The most important takeaway I received from reading this book was this:If I find myself making progress on a problem, I should keep working on each step in a precise and detailed manner. I must be sure I can give justification on why I have approached each step the way I chose to.If I achieve the result, make sure I can check the result. Can I go back and reproduce it? Can I devise a similar example with a set of parameters to produce a predictable result?Upon reading all this, I had the realization that not only is this is the basis for problem-solving — it is the key to solving algorithms problems.Confirming the result is one thing, but Polya makes the key suggestion in that we must STOP! We should not move on. A difficult problem requires reflection. We must take time to reflect on the thought process we have taken to work out the problem. This will help us remember how we were able to solve the problem using the specific tools in our mental toolkit. It will help us with future problems.At some point during attempts to solve a difficult problem, we may get discouraged. We can’t give up! If we make one small step towards our solution, we need to appreciate the advancement. We need to be patient and take each step as a piece of the overall composition of the essential idea.Take our guesses seriously, and don’t rush. Being aware of a “hunch” and keeping it in consideration may lead to a serious breakthrough. Well, just as long as we are cautious! We need to examine any guesses critically and see if they can be of use to us.How to Solve It was amazing in drilling to me the overall problem solving process and caused me to self reflect on how I should approach hard problems. I don’t think I was that terrible at working on problems before — but now I truly believe I can become better at problem-solving and analysis if I take a step back and actually self-reflect on various points of the problem solving process.Developing such a habit and practicing it as if it was nature is key.This was overall a great read. It took me about a week to read and was a bit more difficult to go through — partly because it was so thought provoking!The only downside was that I believe that the book went a little too long and the pace changed 75% of the way through. I believe the examples presented either went over my head purely due to lack of interest, or by then, I had already become convinced with the philosophy drilled by G. Polya on how to problem solve.
D**K
An Encyclopedia of Problem Solving
Great descriptions of problem solving techniques. Some were not new to me, but having them written out and analyzed has made my approach to problems more logical and successful.It is not a straight through read, as it includes a dictionary (kind of) that makes reading cover to cover a disjointed task. The gems it holds are worth digging out individually and making sure you take the time to fully enjoy each one.Great for teachers as it focuses not only on how students should solve problems, but also on the role of the teacher in guiding learners.
J**R
A must-read math book for every middle school student
Polya is a true mathematics educator.
Trustpilot
3 weeks ago
2 weeks ago